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Abstract. Smoking is one of the most important factors 
associated with the development of lung cancer. However, the 
signaling pathways and driver genes in smoking‑associated 
lung adenocarcinoma remain unknown. The present study 
analyzed 433 samples of smoking‑associated lung adenocar-
cinoma and 75 samples of non‑smoking lung adenocarcinoma 
from the Cancer Genome Atlas database. Gene Ontology (GO) 
analysis was performed using the Database for Annotation, 
Visualization and Integrated Discovery and the ggplot2 
R/Bioconductor package. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis was performed using 
the R packages RSQLite and org.Hs.eg.db. Multivariate Cox 
regression analysis was performed to screen factors associated 
with patient survival. Kaplan‑Meier and receiver operating 
characteristic curves were used to analyze the potential 
clinical significance of the identified biomarkers as molecular 
prognostic markers for the five‑year overall survival time. A 
total of 373 differentially expressed genes (DEGs; |log2‑fold 
change|≥2.0 and P<0.01) were identified, of which 71 were 
downregulated and 302 were upregulated. These DEGs were 
associated with 28 significant GO functions and 11 significant 
KEGG pathways (false discovery rate <0.05). Two hundred 
thirty‑eight proteins were associated with the 373 differ-
entially expressed genes, and a protein‑protein interaction 
network was constructed. Multivariate regression analysis 
revealed that 7 mRNAs, cytochrome P450 family 17 subfamily 
A member 1, PKHD1 like 1, retinoid isomerohydrolase 
RPE65, neurotensin receptor 1, fetuin B, insulin‑like growth 
factor binding protein 1 and glucose‑6‑phosphatase catalytic 
subunit, significantly distinguished between non‑smoking and 

smoking‑associated adenocarcinomas. Kaplan‑Meier analysis 
demonstrated that patients in the 7 mRNAs‑high‑risk group 
had a significantly worse prognosis than those of the low‑risk 
group. The data obtained in the current study suggested that 
these genes may serve as potential novel prognostic biomarkers 
of smoking‑associated lung adenocarcinoma.

Introduction

Lung cancer is one of the most prevalent malignancies world-
wide. The incidence of lung cancer was 234,030 cases in 
2018 (accounting for 27% of new cancer cases), with 154,050 
mortalities in 2018 (accounting for 51% of cancer‑associated 
mortalities) (1). The five‑year net survival rate of patients with 
lung cancer was typically low (10‑20% in most nations) (2,3). 
Smoking is a major risk factor for lung cancer. Studies have 
revealed that lung cancer morbidity and mortality increases 
with smoking in a dose‑dependent manner (4‑6). Meanwhile, 
secondhand smoke exposure results in >41,000 mortalities 
among non‑smoking adults each year (7).

Although the majority of lung cancer cases were the result 
of smoking, until 2008 10‑30% of lung cancer cases worldwide 
were not due to tobacco use (8,9). The development of lung 
cancer in people who have never smoked (defined as <100 ciga-
rettes in their lifetime) is becoming a growing health problem. 
Tumors from patients who had never smoked have significant 
gender, geography, histopathological, molecular and clinical 
differences when compared with smoking‑induced lung cancer 
tumors (10). However, the genome‑wide similarities and differ-
ences between smoking‑associated and non‑smoking lung 
adenocarcinoma are largely unknown. Lung adenocarcinoma 
has surpassed squamous cell carcinoma as the most common 
histologic subtype in various nations  (11,12). Therefore, a 
deeper understanding of the biological characteristics and 
differences between smoking and non‑smoking lung adeno-
carcinoma may improve the treatment and screening options 
for patients.

In recent years, several mRNAs, long non‑coding RNAs 
and microRNAs have been identified as biomarkers for the 
non‑invasive detection of various types of cancer, including 
lung, breast, ovarian, prostate and endometrial cancer (13‑17). 
The current study performed an analysis of smoking and 
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non‑smoking lung adenocarcinoma in The Cancer Genome 
Atlas (TCGA) database to identify differentially expressed 
genes (DEGs) and associated signaling pathways. Multivariate 
regression analysis showed that seven mRNAs, cytochrome 
P450 family 17 subfamily A member 1 (CYP17A1), PKHD1 
like 1 (PKHD1L1), retinoid isomerohydrolase RPE65 
(RPE65), neurotensin receptor 1 (NTSR1), fetuin B (FETUB), 
insulin‑like growth factor binding protein 1 (IGFBP1) and 
glucose‑6‑phosphatase catalytic subunit (G6PC), significantly 
distinguished between non‑smoking and smoking adenocar-
cinomas. These genes may serve as potential non‑invasive 
biomarkers for the diagnosis of smoking‑associated lung 
adenocarcinoma.

Materials and methods

Lung adenocarcinoma patient datasets. The mRNA expres-
sion information and corresponding clinical information of 
patients with lung adenocarcinoma was obtained from The 
Cancer Genome Atlas (TCGA; tcga‑data.nci.nih.gov/tcga). 
The chosen cohort contained 522 lung adenocarcinoma 
sample tissues, comprising 433 samples of smoking‑associated 
lung adenocarcinoma, 75 samples of non‑smoking lung 
adenocarcinoma and 14 samples where smoking information 
was not available generated by the TCGA Research Network 
(https://www.cancer.gov/tcga). A sample was considered as 
non‑smoking adenocarcinoma if the patient had never smoked 
or smoked <100 cigarettes in their lifetime  (18). Samples 
from past and current smokers were pooled together as 
smoking‑associated adenocarcinoma (19,20).

Identification of DEGs between smoking and non‑smoking 
lung adenocarcinoma. Differential mRNA expression 
between smoking and non‑smoking lung adenocarcinoma 
was evaluated using the edgeR package in R/Bio conductor 
(version  3.26.5; ht tp://www.bioconductor.org/pack-
ages/release/bioc/html/edgeR.html) (21). The DEGs between 
the data sets were obtained using |log2‑fold change|≥2.0 and 
P<0.01 as cut‑off criteria.

Function and pathway enrichment analysis of differentially 
expressed mRNAs. To understand the DEGs underlying 
biological processes and pathways, Gene Ontology (GO; geneon-
tology.org) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG; www.genome.jp/kegg) pathway analysis were 
conducted using R software and the Database for Annotation, 
Visualization and Integrated Discovery (DAVID version 6.8; 
david.ncifcrf.gov). GO enrichment results were visualized 
using the R packages digest (version 0.6.20; CRAN.R‑project.
org /package=digest)  and ggplot2 (version  3.2.0; 
CRAN.R‑project.org/package=ggplot2). KEGG enrichment 
results were analyzed by the R packages RSQLite (version 2.1.1; 
CRAN.R‑project.org/package=RSQLite) and org.Hs.eg.db 
(version 3.8.2; bioconductor.org/packages/org.Hs.eg.db) along 
with ActivePerl software (version 5.24.3; https://www.actives-
tate.com/products/activeperl). GO terms and KEGG pathways 
were selected with a false discovery rate (FDR)<0.05.

Construction of DEG protein‑protein interaction (PPI) 
networks and hub genes association networks. The online 

protein interaction Search Tool for the Retrieval of Interacting 
Genes/Proteins (version 11.0; STRING; string‑db.org) was 
used to identify the human proteins associated with the DEGs 
and to establish a PPI network (22). Only the interactions with 
a combined score >0.4 were chosen for the PPI network (23). 
The PPI network was visualized using Cytoscape software 
(version 3.6.1) (24) and the association between the proteins 
and DEGs was analyzed. The tight link hub genes in the 
PPI network were calculated using MCODE (version 1.5.1; 
http://apps.cytoscape.org/apps/mcode) using default 
parameters.

Cox proportional hazard regression model. After inte-
grating clinical data and differential gene expression data, 
19 of 433 patients with smoking lung adenocarcinoma were 
deleted because of no overall survival clinical data. Therefore, 
414 patients were used for further analysis. The clinical survival 
information and DEG data were combined and a univariate 
Cox proportional hazard analysis was performed to identify 
target biomarkers (P<0.001) and candidate genes associated 
with patient survival time. Multivariate Cox regression anal-
ysis was subsequently performed to further screen for factors 
associated with patient survival time. Using the median of the 
prognostic risk score as a critical point (0.94), smoking‑related 
lung adenocarcinomas were classified as high‑risk (n=207) 
or low‑risk (n=207). Kaplan‑Meier and receiver operating 
characteristic (ROC) curves were used to analyze the potential 
clinical significance of these biomarkers as molecular prog-
nostic markers for the five‑year overall survival. Kaplan‑Meier 
curves were constructed using the R package survival 
(CRAN.R‑project.org/package=survival. ROC curves were 
constructed using the R package survival ROC (version 1.0.3; 
CRAN.R‑project.org/package=survivalROC). The risk 
heat map was constructed using the R package pheatmap 
(version 1.0.12; CRAN.R‑project.org/package=pheatmap) and 
had a significant impact on survival.

Results

Differentially expressed mRNAs in smoking‑associated lung 
adenocarcinoma compared with non‑smoking lung adeno‑
carcinoma. Analysis of TCGA transcription data from 433 
smoking‑associated lung adenocarcinoma samples and 75 
non‑smoking lung adenocarcinoma samples revealed that 373 
mRNAs were differentially expressed (|log2‑fold change|≥2.0 
and P<0.01). Of these DEGs, 71 mRNAs were downregulated 
while 302 mRNAs were upregulated. These results demon-
strated that the gene profiles of smoking and non‑smoking 
lung adenocarcinomas were significantly different. The DEGs 
are displayed in a heat map and a volcano map (Fig. 1A and B). 
Detailed differential mRNA expression levels are presented in 
Table I.

GO functional predictions of DEGs in smoking‑associated 
adenocarcinoma. To predict the function of aberrantly 
expressed genes, GO functional data were downloaded from 
DAVID. Differential mRNA expression analysis was performed 
with three functional assemblies: Biological process, cellular 
component and molecular function (Fig. 2A and B). A total 
of 28 significant GO functions with an FDR<0.05 were 
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identified. The top 10 GO functions and corresponding genes 
are presented in Fig. 2C. Detailed GO results are presented in 
Table II. The present study demonstrated that ‘nucleosomes’ 
was the most significant GO term for the identified DEGs.

KEGG pathway enrichment of differentially expressed 
mRNAs. To predict the KEGG pathway enrichment for the 
identified DEGs, pathway enrichment data were downloaded 
from KEGG. A total of 11 significantly KEGG pathways 

Figure 2. Significantly enriched GO terms and KEGG pathway analysis in smoking‑associated lung adenocarcinoma. (A) GO analysis classified the DEGs by 
biological process, cellular component and molecular function. (B) Significantly enriched GO terms for the DEGs in smoking lung adenocarcinoma (func-
tions). (C) Top 10 significant GO terms and associated hub genes. The color key represents the corresponding GO (D) KEGG pathway analysis of significantly 
enriched genes and hub gene counts. For each term, the number of enriched genes is indicated by the bar size; while the level of significance is represented by 
the color. Blue indicates low significance while red represents high significance (FDR<0.05). GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; DEGs, differentially expressed genes; FC, fold change; FDR, false discovery rate.

Figure 1. Analysis of differentially expressed mRNAs in smoking‑associated adenocarcinomas compared with non‑smoking lung adenocarcinomas. 
(A) Heatmap displaying the expression levels of the differentially expressed genes. (B) Volcano plot of the log2FC and ‑log10 (FDR). Significant RNA expres-
sion differences in smoking and non‑smoking lung adenocarcinoma are presented (upregulated genes in red and downregulated genes in green). FC, fold 
change; FDR, false discovery rate.
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with an FDR<0.05 were identified and R software was used 
to analyze downloaded data. The KEGG pathways analyzed 
included: ‘Systemic lupus erythematosus’, ‘alcoholism’, 
‘steroid hormone biosynthesis’, ‘viral carcinogenesis’, ‘cortisol 
synthesis and secretion’, ‘taste transduction’, ‘maturity‑onset 
diabetes of the young’, ‘ovarian steroidogenesis’, ‘choles-
terol metabolism’, ‘aldosterone synthesis and secretion’ 
and ‘peroxisome proliferator‑activated receptor signaling 
pathway’ (Fig. 2D and Table III). The majority of the DEGs 
were significantly enriched in the ‘systemic lupus erythe-
matosus’ pathway. Notably, genes associated with histones, 
which are an important part of nucleosomes, were identified 
in this pathway.

Construction of a PPI network using the DEGs. PPI network 
analysis was performed using the STRING online database 
and Cytoscape software. A total of 238 proteins were analyzed 
(Fig. 3) and the tightly linked hub genes in the PPI network 
were calculated using MCODE. The top 5 most significant gene 
clusters were identified (Table IV). These genes may serve an 

important role in the development of smoking‑associated lung 
adenocarcinoma.

Cox proport ional hazards regression model. The 
R/Bioconductor packages survival, survivalROC and 
pheatmap were used to calculate the prognostic survival of 
patients in the smoking‑associated lung adenocarcinoma 
group. Seven mRNAs were significantly associated with 
overall survival, including CYP17A1, PKHD1L1, RPE65, 
NTSR1, FETUB, IGFBP1, and G6PC. Using the median 
of the prognostic risk score (0.94) as a cut‑off point, these 
7 mRNAs were assigned to each patient in the high‑risk 
(n=207) or low‑risk (n=207) smoking‑associated lung adeno-
carcinoma groups. The Kaplan‑Meier estimate was used to 
calculate the high‑risk and low‑risk patient cohort overall 
survival for the 7 mRNA signatures in patients. Patients 
in the high‑risk group had a significantly worse prognosis 
compared with the low‑risk group (P<0.001; Fig. 4A). ROC 
analysis was used to assess the sensitivity and specificity 
of the 7 mRNA markers for the prediction of the five‑year 

Table I. Differentially expressed genes in smoking‑associated lung adenocarcinoma compared with non‑smoking adenocarcinoma.

A, Upregulated genes

CALB1, HIST1H4C, HIST1H1E, HIST1H1B, POU5F2, HIST1H4B, HIST2H2AB, HIST1H4E, HIST1H2BB, WFDC5, 
HIST1H4D, HIST1H1D, HIST1H2BI, PNMA5, HIST1H3B, HIST1H2AB, WFDC12, HIST1H2AJ, TEX19, KIR2DL1, 
HIST1H2BL, MSTN, HIST1H2AH, HIST1H2BE, GPR22, HIST1H3C, TAS2R30, NNAT, NTS, APOA1, GPR52, DHRS2, 
HIST1H2BM, HIST2H2AC, HIST1H3F, PRH2, HIST1H4A, HIST1H2BH, HIST1H3J, LRRC38, APOA2, AFP, HIST1H1A, 
HIST1H3A, HIST1H2AL, HIST1H3I, PRB4, HIST1H2BO, HIST2H3D, NECAB2, PRB3, CHGA, HRG, INSM1, TAC3, 
IFNK, MYT1, MAEL, SCG2, HIST1H4F, PRSS48, ACTN3, HIST1H4L, C10orf113, NSG2, HIST1H2BF, VTN, IRX4, SPIC, 
LRRTM2, TAS2R13, GAL, DPPA2, PSG11, FABP7, TKTL1, SEZ6, ZPBP2, NKX2‑3, PSG1, KCNH6, ADGRB1, GABRA2, 
TAS2R46, TUBA3E, ADAM20, PSG8, STXBP5L,4‑Mar, OR6T1, ANGPTL3, ZP2, PSG5, F2, TAGLN3, PSG3, HBE1, FXYD4, 
SERPINB13, TDRD12, PNMA6E, SPATA21, CDK5R2, BOLL, RPE65, SPINK4, HIST1H2AD, PTPRN, HMX2, SPRR2E, 
PBOV1, SLC14A2, SPRR2G, MAB21L2, CT45A1, AKR1C4, RNF113B, BHMT, PSG2, AMBP, PRSS56, HRH3, PI3, KRT14, 
TSPYL6, SLC1A6, CHRNB2, RBM46, TDRD15, MPC1L, XKR7, ACTL6B, NOS1, CLCA4, PSG7, FGF4, LIPF, KIR3DL2, 
EPHA5, KRT13, KCNJ13, C12orf40, OR4A16, FEV, GC, SBSN, DPPA5, CXorf67, LRTM2, CGA, APOC3, TSPY2, PSG6, 
KNG1, NEUROD4, FRG2C, NKX2‑2, TAS2R50, CNGA3, KRT5, TAS2R3, CDH9, GCG, APOB, HHLA1, HEPACAM2, 
KLK13, VSX2, KRT31, NEUROG3, NTSR1, ADH7, CA6, SLC7A14, MSMB, KRT33A, C6orf10, FOXI1, VGLL2, SNX31, 
PTF1A, DKK4, LGALS14, UGT2A1, CLEC2A, TSPY3, DEFA5, KRT83, BANF2, FETUB, PRB1, TMIGD1, LCE3D, KRT77, 
TEX13B, CBLN1, OR51B5, CRISP1, SERPINA11, FAM83C, MYBPC1, NRSN1, RAX, SPRR2A, KPRP, H3.Y, SCG3, 
NPY, NLRP11, PPP1R3A, CALY, PAH, FGF3, DSPP, PSG4, MUC2, CACNG7, AMBN, SOHLH1, INS, SLC6A2, TUNAR, 
FAM205C, GPR50, BPIFB4, IGFBP1, G6PC, SPINT4, TAS2R43, KRT9, TMPRSS11A, ALB, CRYBA2, GMNC, HSD3B1, 
SLC6A19, ADAMTS19, MORC1, SLC6A5, RBP3, ADGRG7, SULT1C3, PNMA6F, PAQR9, PRLHR, UCN3, NEUROD1, 
HDGFL1, SPRR2D, SRARP, TLE7, FGF21, CERS3, CT45A10, LUZP4, CLCA1, TAC1, FRG2, S100A7, ZNF560, ZMAT4, 
SAGE1, SLC17A6, HIST1H2BA, CACNG2, UGT3A1, AMELY, NTSR2, LCN9, LIN28A, C10orf99, TFAP2B, OR13H1, 
GNAT3, UGT1A7, HAO1, TAAR1, LGALS13, DSG3, MAGEA11, CPLX2, OTX2, RBFOX1, CRH, STRA8, TSPY1, GLRA4, 
NR0B1, PCSK2, ST8SIA3, ASCL1, NLRP13, BLID, KRT76, CRYGD, AMELX, PRODH2, DMRTB1, CT47B1, SPRR2B, 
CALCA, AC187653.1, OR56A3

B, Downregulated genes

ITLN1, PRG4, MYRFL, CYP17A1, STAR, HSD3B2, MYL2, TNMD, PKHD1L1, ASIC2, FAM9C, BMX, C21orf62, EBF3, 
GPR26, FAM9A, PDZRN4, RSPO1, CYP11B1, SLC3A1, CRB2, CYP4F8, AXDND1, SPAG11B, CYP21A2, CYP11B2, 
SERTM1, MYH7, RHAG, MC2R, SSX3, ANKRD1, FABP1, FBN2, EMX2, CALN1, HPR, STAC2, SORCS3, PCDH8, TUSC5, 
BARHL2, PRSS38, CEACAM18, OLFM4, DCX, SULT2A1, SCGB2A2, SPAG11A, AGXT2, CASR, C1orf94, BTNL3, 
HOXA13, VCX3B, BNC1, CRABP1, SNTG1, REG3A, DPCR1, REG3G, REG4, SPANXD, SPANXC, MUC17, ADIPOQ, 
UGT1A8, SLC2A2, CALML5, TRIM48, FTHL17
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overall survival. The area under the curve (AUC) was 0.769 
[95% confidence interval (CI), 0.70‑0.83], which indicated 
that the 7 mRNAs had high sensitivity and specificity 
(Fig. 4B). Therefore, the model exhibits a high predictive 
power that could be used to predict the overall survival of 
patients with smoking‑associated lung adenocarcinoma. To 
better understand the association between the expression of 
these 7 mRNAs and the survival time of patients, a risk heat 
map of these mRNAs in combination with clinical survival 
data was generated (Fig. 4C).

Discussion

Lung cancer is the main cause of oncogenic mortality in males 
and females worldwide. In spite of improved understanding of 
oncogenic drivers, few studies have identified genes that are 
differentially expressed between smoking and non‑smoking 
lung adenocarcinoma. The elucidation of the mechanisms 
underlying the pathogenesis of smoking‑associated lung 
adenocarcinoma is a challenging task. The current study 
used bioinformatics methods to analyze 433 samples of 

smoking‑associated lung adenocarcinoma and 75 samples of 
non‑smoking lung adenocarcinoma. A total 373 mRNAs that 
were differentially expressed between the two groups were 
identified. Of these, 71 mRNAs were downregulated and 302 
mRNAs were upregulated. To predict the function of aber-
rantly expressed genes, pathway analysis was performed and 28 
significant GO functions and 11 significantly enriched KEGG 
pathways were identified. The Cox proportional hazards 
regression model suggested that 7 mRNAs may be used as 
prognostic indicators: CYP17A1, PKHD1L1, RPE65, NTSR1, 
FETUB, IGFBP1 and G6PC. The AUC of the 7 mRNAs 
analyzed was 0.769 (95% CI, 0.70‑0.83), which indicated that 
the model had a good predictive value (25).

CYP17A1 is a qualitative regulator of human steroid 
biosynthesis (26). It is a potential non‑small cell lung cancer 
(NSCLC) susceptibility candidate gene, which converts 
testosterone to estradiol in hormone‑associated cancers (27). 
Olivo‑Marston et al  (28) revealed a small yet significant 
association between the CYP17A1 rs743572 polymorphism 
and lower serum estrogen and improved survival of patients 
with NSCLC. While Zhang  et  al  (29) demonstrated that 

Table II. Significant GO enrichment analysis of differentially expressed genes in smoking‑associated lung adenocarcinoma.

TERM ID	 Term	 Count	 False discovery rate

GO:0000786	 Nucleosome	 34	 2.66x10‑30

GO:0006334	 Nucleosome assembly	 31	 2.32x10‑22

GO:0005576	 Extracellular region	 87	 1.87x10‑16

GO:0032200	 Telomere organization	 13	 3.83x10‑11

GO:0000788	 Nuclear nucleosome	 15	 4.70x10‑11

GO:0000183	 Chromatin silencing at rDNA	 14	 1.23x10‑10

GO:0046982	 Protein heterodimerization activity	 37	 3.58x10‑10

GO:0006335	 DNA replication‑dependent nucleosome assembly	 13	 4.57x10‑10

GO:0045814	 Negative regulation of gene expression, epigenetic	 14	 9.80x10‑9

GO:0044267	 Cellular protein metabolic process	 19	 1.41x10‑8

GO:0051290	 Protein heterotetramerization	 13	 1.89x10‑8

GO:0045815	 Positive regulation of gene expression, epigenetic	 14	 1.87x10‑7

GO:0000228	 Nuclear chromosome	 13	 2.76x10‑7

GO:0008544	 Epidermis development	 15	 1.07x10‑6

GO:0031047	 Gene silencing by RNA	 16	 4.51x10‑6

GO:0000784	 Nuclear chromosome, telomeric region	 15	 2.08x10‑4

GO:0006704	 Glucocorticoid biosynthetic process	 6	 4.59x10‑4

GO:0042393	 Histone binding	 14	 5.15x10‑4

GO:0045653	 Negative regulation of megakaryocyte differentiation	 7	 0.001
GO:0007565	 Female pregnancy	 12	 0.001
GO:0060968	 Regulation of gene silencing	 6	 0.001
GO:0005615	 Extracellular space	 52	 0.001
GO:0034774	 Secretory granule lumen	 6	 0.002
GO:0010951	 Negative regulation of endopeptidase activity	 13	 0.005
GO:0016233	 Telomere capping	 7	 0.005
GO:0006336	 DNA replication‑independent nucleosome assembly	 7	 0.012
GO:0007218	 Neuropeptide signaling pathway	 11	 0.035
GO:0006705	 Mineralocorticoid biosynthetic process	 4	 0.043

GO, Gene Ontology.
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CYP17A1 polymorphisms were not associated with NSCLC 
development in Asian patients. PKHD1L1 has been impli-
cated in lymph node metastasis in endometrial cancer (30). 
Mutation of PKHD1L1 served an important role in patients 
with early high‑grade serous ovarian cancer  (31). RPE65 
is highly expressed in the retinal pigment epithelium and 
encodes an isomerohydrolase that is required for converting 
all‑trans‑retinyl esters into 11‑cis‑retinal, the natural ligand 
and chromophore for the opsins in rod and cone photo-
receptor cells  (32). NTSR1 and its ligand neurotensin are 

frequently overexpressed in tumors of epithelial origins. 
This ligand/receptor complex contributes to the progres-
sion of several tumor types, such as liver cancer or prostate 
cancer, via the activation of the biological processes involved 
in tumor progression  (33,34). The monoclonal antibody 
against NTSR1 restores sensitivity to platinum‑based therapy 
and decreases metastasis in lung cancer  (35). FETUB, a 
liver‑derived plasma protein, has recently been reported to 
influence glucose metabolism (36). FETUB copy number 
amplification in human esophageal cancer, head and neck 

Table III. Significant Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes 
in smoking‑associated lung adenocarcinoma.

Pathway ID	 Pathway	 Count	 P‑value (adjust)	 Genes

hsa05322	 Systemic lupus erythematosus	 30	 6.82x10‑22	 HIST1H4C, HIST1H4B, HIST2H2AB, HIST1H4E, 
				    HIST1H2BB, HIST1H4D, HIST1H2BI, HIST1H3B, 
				    HIST1H2AB, HIST1H2AJ, HIST1H2BL, 
				    HIST1H2AH, HIST1H2BE, HIST1H3C, 
				    HIST1H2BM, HIST2H2AC, HIST1H3F, HIST1H4A, 
				    HIST1H2BH, HIST1H3J, HIST1H3A, HIST1H2AL, 
				    HIST1H3I, HIST1H2BO, HIST2H3D, HIST1H4F, 
				    HIST1H4L, HIST1H2BF, HIST1H2AD, HIST1H2BA
hsa05034	 Alcoholism	 33	 1.65x10‑21	 HIST1H4C, HIST1H4B, HIST2H2AB, HIST1H4E, 
				    HIST1H2BB, HIST1H4D, HIST1H2BI, HIST1H3B, 
				    HIST1H2AB, HIST1H2AJ, HIST1H2BL, 
				    HIST1H2AH, HIST1H2BE, HIST1H3C, 
				    HIST1H2BM, HIST2H2AC, HIST1H3F, HIST1H4A, 
				    HIST1H2BH, HIST1H3J, HIST1H3A, HIST1H2AL, 
				    HIST1H3I, HIST1H2BO, HIST2H3D, HIST1H4F, 
				    HIST1H4L, HIST1H2BF, HIST1H2AD, NPY, 
				    CALML5, HIST1H2BA, CRH
hsa00140	 Steroid hormone biosynthesis	 10	 1.21x10‑5	 CYP17A1, HSD3B2, CYP11B1, CYP21A2, 
				    CYP11B2, AKR1C4, UGT2A1, UGT1A8, HSD3B1, 
				    UGT1A7
hsa05203	 Viral carcinogenesis	 16	 8.13x10‑5	 HIST1H4C, HIST1H4B, HIST1H4E, HIST1H2BB, 
				    HIST1H4D, HIST1H2BI, HIST1H2BL, HIST1H2BE, 
				    HIST1H2BM, HIST1H4A, HIST1H2BH, 
				    HIST1H2BO, HIST1H4F, HIST1H4L, HIST1H2BF, 
				    HIST1H2BA
hsa04927	 Cortisol synthesis and secretion	 8	 <0.001	 CYP17A1, STAR, HSD3B2, CYP11B1, 
				    CYP21A2, MC2R, HSD3B1, NR0B1
hsa04742	 Taste transduction	 9	 <0.001	 ASIC2, TAS2R30, TAS2R13, GABRA2, TAS2R46, 
				    TAS2R50, TAS2R3, TAS2R43, GNAT3
hsa04950	 Maturity onset diabetes of the	 5	 0.003	 NKX2‑2, NEUROG3, SLC2A2, INS, NEUROD1
	 young
hsa04913	 Ovarian steroidogenesis	 6	 0.007	 CYP17A1, STAR, HSD3B2, CGA, INS, HSD3B1
hsa04979	 Cholesterol metabolism	 6	 0.007	 STAR, APOA1, APOA2, ANGPTL3, APOC3, APOB
hsa04925	 Aldosterone synthesis and	 7	 0.046	 STAR, HSD3B2, CYP21A2, CYP11B2, MC2R, 
	 secretion			   CALML5, HSD3B1
hsa03320	 Peroxisome proliferator‑activated	 6	 0.049	 FABP1, APOA1, APOA2, FABP7, APOC3, ADIPOQ
	 receptor signaling pathway

Hsa, homo sapiens.



ONCOLOGY LETTERS  18:  3613-3622,  2019 3619

squamous cell carcinoma was at least 10‑23% (37). FETUB 
was associated with decreased lung function in patients 
with chronic obstructive pulmonary disease (COPD), and 
predicted the occurrence of acute exacerbation or frequent 
acute exacerbation (38). FETUB, in combination with other 
markers, may have diagnostic and prognostic value in COPD.

IGFBP1‑6 are high‑affinity regulators of insulin‑like 
growth factor (IGF) activity and modulate important biological 
processes, including cell proliferation, survival, migration, 
senescence, autophagy, angiogenesis, differentiation and 

apoptosis (39,40). Apart from inhibiting the actions of IGF 
by inhibiting binding to the IGF‑1 receptor, IGFBP1 also 
performs IGF‑independent actions, including the modulation 
of other growth factors, nuclear localization, transcriptional 
regulation and binding to non‑IGF molecules involved in 
tumorigenesis, growth, progression and metastasis  (41). 
The expression and function of IGFBP1 in stimulating or 
inhibiting lung cancer growth have yet to be elucidated (39). 
G6PC catabolizes glucose‑6‑phosphate (G6P) to glucose and 
inorganic phosphate, thereby preventing the accumulation 

Figure 3. DEG protein‑protein interaction network and hub gene analysis. A total of 238 DEGs were filtered into a PPI network containing 360 nodes and 
1116 edges. Upregulated proteins are shown in red, and downregulated proteins are shown in blue. DEG, differentially expressed gene; PPI, protein‑protein 
interaction.

Table IV. Top five most significant gene clusters analyzed by MCODE in the protein‑protein interaction network.

Cluster	 Nodes number	 Edges number	 Genes

1	 30	 420	 HIST1H4C, HIST1H3F, HIST1H4D, HIST1H4L, HIST1H4E, HIST1H3A, 
			   HIST1H4F, HIST1H3I, HIST1H2AH, HIST1H4B, HIST2H2AC, HIST2H2AB, 
			   HIST1H2BH, HIST1H2AB, HIST1H2AJ, HIST2H3D, HIST1H2BM, HIST1H4A, 
			   HIST1H2BL, HIST1H2BA, HIST1H2BF, HIST1H2BB, HIST1H2BO, 
			   HIST1H2AD, HIST1H3J, HIST1H3B, HIST1H3C, HIST1H2BE, HIST1H2AL, 
			   HIST1H2BI
2	 16	 89	 NPY, GAL, TAS2R13, ALB, KNG1, GCG, TAS2R46, GNAT3, HRH3, TAS2R43, 
			   TAS2R3, TAC1, CASR, TAS2R30, NTS, TAS2R50
3	 23	 81	 HSD3B2, RHAG, HBE1, APOA2, CYP11B2, CALCA, CYP17A1, SULT2A1, 
			   AMBP, CRH, MC2R, STAR, CYP21A2, IGFBP1, NR0B1, APOB, APOA1, TAC3, 
			   AFP, CYP11B1, NTSR2, NTSR1, APOC3
4	 5	 10	 LGALS13, PSG2, PSG1, PSG3, PSG6
5	 4	 6	 SPINT4, SPAG11B, SPAG11A, CRISP1
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of G6P, which regulates oxidative metabolism of cancer 
cells (42).

While primarily thought of as an hepatic enzyme that 
serves a major role in glucose homeostasis, G6PC is dysregu-
lated in an array of human tumor types, such as ovarian 
cancer (43). Lack of G6PC expression decreased liver cell 
immunity and promoted tumor development in patients with 
glycogen storage disease (44,45).

In conclusion, the present study evaluated the mRNA 
expression of 433  patients with smoking‑associated lung 
adenocarcinoma and 75  patients with non‑smoking lung 
adenocarcinoma. A total of seven genes were identified to 
have high diagnostic sensitivity and specificity associated 
with overall survival of patients with smoking‑associated 
lung adenocarcinoma patients. The lack of experimental data 
to verify these findings is a limitation of the present study. It 
will be interesting to further explore the roles of CYP17A1, 
NTSR1, FETUB, IGFBP1 and G6PC in the development of 
smoking‑associated lung adenocarcinoma.
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